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ABSTRACT

Military Command and Control (C2) requires easy access to information

needed for the commander's situation assessment and direction of troops.

Providing this information via synthetic speech is a viable alternative, but

additional informatirn is required before speech systems can be implemented

for C2 functions. An experiment was conducted to study several factors which

may affect the intelligibility of synthetic speech. The factors examined were 1)

speech rate, 2) synthetic speech messages presented at lower, the same, and

higher frequencies than background noise frequency, 3) voice richness, and 4)

interactions between speech rate, voice fundamental frequency, and voice

richness. Response latency and recognition accuracy were measured. Results

clearly indicate that increasing speech rate leads to an increase in response

latency and a decrease in recognition accuracy, at least for the novice user. No

effect of voice fundamental frequency or richness was demonstrated.
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I. INTRODUCTION

A. BACKGROUND

1. Command and Control

Military commanders probably have dealt with how to control their

forces since the beginning of time. However, only within recent history has

command and control (C 2 ) been identified and studied as a separate

discipline. C2 is critical to any military commander. It has special significance

to the United States and its allies, which depend on overcoming numerical

inferiority with superior equipment and troop control. C2 systems

disseminate information and orders to various sites within the command

structure in order to support the commander. These systems rely heavily on

computers due to the vast amour ts of data processing required. The

interfaces between humans and computers therefore are very important for

efficient C2 operations.

An information chain is only as strong as its weakest link. The more

interface layers between a decision maker and the information desired, the

greater the likelihood of inaccuracies, delays, and frustration. Poorly designed

and implemented interfaces result in user errors and confusion. Personnel

may be hesitant to use computer information sources if they are awkward.

2. Computer Generated Speech as a Computer Interface

Computer generated speech has been proposed as an information

output technique for computers that is acceptable to many users (Williges and

Williges, 1982). This type of computer interface allows the computer to
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"speak" directly to the decision maker without other human involvement.

Speech input and output as a human-computer interface method is garnering

more attention as it becomes more economical and technologically feasible

(Hakkinen and Williges, 1984).

Computer generated speech may be utilized in a variety of ways.

Four general categories of use have been identified by DeHaemer (1989).

These are:

1. Provide information by voice as a more natural and comfortable
means for the user.

2. Increase the information bandpass, complementing visual information
with aural information.

3. Decrease cognitive loading of the visual information channel by
shifting information to the aural channel.

4. Facilitate "eyes on" a visual/spatial problem while providing
verbal/aural instructions or information.

Computer generated speech presently is used in various industrial,

military, and otner federal applications. The U.S. Department of Energy has

employed synthetic speech as an alarm system via public address and

telephone for critical faults experienced during experimental investigation of

the best way to dispose of radioactive waste (Digital Equipment Corporation,

1985). The National Aeronautics and Space Administration is utilizing

synthetic speech to assist maintenance technicians in a task vital to the space

shuttle program--maintaining the thermal protection system (Mollakarimi

and Hamid, 1989). Synthetic speech is used to provide prompts, instructions,

and feedback to the technicians. United Parcel Service utilizes a voice

input/output system to free the hands and eyes of operators handling

packages, which maximizes the efficiency of package handling and the speed
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of data entry (Verbex, 1988). The United Kingdom plans to install computer

generated voice output in its Euro Fighter Aircraft to provide timely system

and threat status reports to the pilot (Galletti and Abbott,. 1989).

3. Computer Generated Speech Technology

The definition of "synthetic" speech depends on the user. One

definition requires that, for a computer to generate true synthetic speech, the

words that are spoken by the computer should not have been prespoken by a

human (Cater, 1983). The method of storage--tape, or integrated circuit--is not

relevant. If the words have been prespoken, thed the speech is considered to

be reconstructed speech. Thus direct waveform encoding and reconstruction

of utterances is reconstructed speech. Under this definition, only one true

"synthetic" speech method is included in this study: the analog formant

frequency synthesis technique.

A second definition of "synthetic" speech is related to basic data

sampling theory--Shannon's sampling theorem and the Nyquist rate (Cater,

1983; Stanley, 1982). According to these two theories, a signal must be

uniformly sampled at a rate at least as high as twice the highest frequency in

the signal's spectrum for adequate description of the analog waveform

(Stanley, 1982). This means that, for satisfactory reconstruction of a voice

signal with a maximum frequency of 3 kHz, the signal must be sampled at a

rate of 6 kHz or higher. Adequate storage of each sampled signal in a

computer requires at least four data bits per sample; this requires a bit

sampling rate of 24,000 bits per second (6000 samples/sec x 4

bits/sample)(Cater, 1983). If the same quality of speech could be reconstructed
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with a reconstruction rate lower than the expected of 24,000 bits per second,

then "synthetic" speech is produced instead of digitally reconstructed speech.

For this study, the term "synthetic" speech is used to mean that the

words have not been prespoken by humans. The term "digitized" speech

refers to speech generation methods that require that words be prespoken by

humans. "Computer generated" speech is used for both synthetic and

digitized speech.

a. Digitized Speech

There are many methods of producing digitized speech. As an

example, one of the simplest methods of speech generation is the waveform

encoding and reconstruction technique. For this process, a signal waveform

is sampled by a unit sampling function at intervals T for a duration of to

(Inglis, 19881. Figure 1 illustrates this process for a 3-data- bit analog-to-digital

converter.

The original input signal, Figure 1(a), is the analog waveform

which is to be sampled by a digital sampling system. For the signal to be

reconstructible, the minimum sampling rate--the Nyquist rate--must be at

least as high as twice the highest frequency in the spectrum to be sampled.

The sampled speech is a pulse-amplitude modulated (PAM) signal, as shown

in Figure 1(b). The PAM signal is a sampled-data signal consisting of a

sequence of pulses in which the amplitude of each pulse is proportional to

the analog signal at the corresponding sampling point. The signal is still

analog. To translate it into digitized form, each sampled data pulse is replaced

by one of a finite number of possible amplitude data values (Figure 1(c)). This

process is called quantization; the pulses are now called pulse-code modulated
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(PCM). The possible number of finite values is determined by the number of

data bits used to represent the value of each pulse. For example, a two data bit

system could represent 22 or 4 values, while a 3 bit system could represent 23

(a) Original
Signal

5.9

(b) PAM 4.6
Pulses 3.0 

3.2
2.4

ynH1.4

0-l - T .,- ,-Itol

6

(c) PCM
Pulses

33
2

1

011 010 110 011 101 001

(d) PCM
Output 0110101100illOlOOl

Figure 1. 3 Bit Analog-to-Digital Conversion
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or 8 values. Finally, as shown in Figure 1(d), the pulses are stored in a

computer as binary digits. The reconstruction process is quite similar to the

encoding process.

A typical speech sampling and playback system is illustrated in

Figure 2. Sound is transformed from acoustical to electrical energy by a

microphone and then passed through a low pass filter to prevent aliasing by

removing frequencies above one-half of the sampling rate. Aliasing occurs

when the Nyquist minimum sampling rate requirement is not met and

components of the original spectrum overlap and cannot be uniquely

determined or separated (Teja and Gonnella, 1983). The amplifier intensifies

the signal to a usable level. The sampler produces a signal of the type shown

in Figure 1(b). The analog-to-digital converter is actually composed of two

parts: the quantizer and the digital encoder. A 4-data-bit analog-to-digital

converter is illustrated in Figure 2. However, converters may be designed for

various numbers of bits--8,12,16, etc. A resident computer program

sequentially stores the data in computer memory.

A playback program steps through the stored data and sequentially

outputs it to the digital-to-analog converter The PCM decoder deciphers the

4-bit code, converting it into the voltage level represented by the binary digits.

A low pass filter removes undesirable high frequencies and the amplifier

intensifies the signal to a usable level for the speaker system.

The quality of the output speech is highly dependent on the

original sampling rate and on the number of bits used to represent the value

of each pulse. Generally, the higher the sampling rate and the higher the

number of bits, the better the quality of the resultant speech output.
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b. Synthetic Speech

Analog formant frequency synthesis is a typical synthetic speech

methodology, used here as an illustration of the technique. The waveform

encoding and reconstruction technique (discussed above) is similar to a

"photograph" of speech. Analog formant frequency synthesis is more like an

artist's rendition of speech. The principles behind the formant synthesizer

are based on acoustic replication of the human vocal tract.

Basic understanding of human speech and linguistics is

necessary in order to understand this synthesis technique. Typical pitch

frequencies for male voices range from 130 Hz to 146 Hz, with an average

frequency of around 141 Hz. The female voice pitch range is from 188 to 295

Hz, with a median frequency of approximately 233 Hz (Cater, 1983). These

frequencies are the fundamental or glottal vibration frequencies created by the

vocal chords.

Various resonance frequencies are created in the cavities within

the vocal tract and are known as the formant frequencies. Three to four

formant frequencies are required for adequate speech synthesis and range

from approximately 200 to 2000 Hz from the first to the third formant. All of

the formant frequencies exist simultaneously during speech. What is heard

during speech is not a single frequency but rather a number of frequencies

which have been created from the glottal vibration of the vocal chords.

In addition to the formant frequencies, fricatives, plosives, and

nasal consonant sounds also are important to human understanding of

speech. The fricatives and plosives are hissing and popping sounds primarily

created by the teeth, lips, and tongue at the front of the mouth. Nasal
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consonant sounds (such as the ng in ring) are strongly dependent on the

resonance of the nasal cavities.

A wide variety of sounds is necessary to produce normal human

speech. Speech results from stringing together phonemes, which are basic

sound units of speech. The English language uses approximately 40 of them

(Cater, 1983). In addition, there are many variations of each phoneme, called

allophones. The variations present in the allophones depend not only on the

phoneme and word being spoken but also on the position of the phoneme

within the word. Diphthongs are sounds which typically arise from the

pronunciation of two vowel-type phonemes in series. Affricates are similar

to diphthongs except that the unique sound arises from the pronunciation of

two consonant-type phonemes in series.

Analog formant frequency synthesis begins with the entry of

characters representing the words to be spoken into a computer (Figure 3). A

keyboard is used to type and enter the words. The computer parses each word

into its component phonemes, allophones, etc., and outputs the relevant

control information for each unit of sound to the formant speech synthesizer.

Bandpass filters are utilized to create resonance frequencies similar to human

formant frequencies. The center frequency of each of the bandpass filters is

adjustable to match the equivalent output of the human vocal system for a

particular unit of sound. Fricative and nasal resonators are necessary in order

to simulate the fricative and nasal consonants. To the human ear, the

summation of the filter outputs resembles the output of the human voice.
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Computer

Keyboard Parse WordJ Into Phoneme Output Phonemes

Formant Speech Synthesizer

Noise Sou Fricative

Glottal Pulse Speech SeOscillator ' . Output I

_ Nasal

Resonator

Figure 3. Formant Speech Synthesizer System (Adapted from Cater, 1983)

4. Computer Generated Speech Technology for Military Systems

Of particular interest to the U.S. military are voice input/output

systems used to assist in managing aviation assets. One voice alert system

currently installed in the F/A 18 Hornet aircraft provides verbal caution and
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warning messages to the pilot concerning his altitude, engine status, and fuel

level. In the future this alerting system may be integrated with sophisticated

computer programs in order to provide a vocal listing of outside threats in a

coherent hierarchy, beginning with the most urgent (Kitfield, 1989).

Boeing Military Aircraft Company is conducting research related to

improving the man-machine interface for the E-3 aircraft Airborne Warning

and Control System (AWACS). AWACS is a command, control,

communications, and intelligence (C3 1) system with onboard radar,

surveillance, and data processing capabilities. It supports missions that

identify and track airborne and surface targets for air traffic control, provides

early warning of enemy threats, and directs interceptors to their targets. A

prototyping approach is being used to evaluate voice input and output

applicability for C3 1 systems (Salisbury, 1989). The prototype has

demonstrated the usefulness of voice input and output systems for several

functions, including fuel updating, committing fighters, tactical and broadcast

control, and sensor suite management. End users reported that they enjoyed

the intuitive nature of the voice input/output interface (Chilcote, 1989).

The Speech Technology Group at the Naval Ocean Systems Center

(NOSC) at San Diego began working with voice input and output systems in

1984. Systems of particular interest include voice controlled status boards in

the Carrier Air Traffic Control Center (CATCC) and voice synthesis used for

console message alerts in a U.S. Marine Corps mobile computer complex. For

the CATCC NOSC found that voice input/output technology reduced

manpower requirements, reduced errors, and increased the update and

dissemination rate of the information (Johnson and Nunn, 1986).
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The NOSC voice output system for the mobile computer complex

provided alerts to the computer operator, who is often required to be away

from his console. In addition, the system was programmed to provide

translations of the otherwise cryptic two-character alert codes. Three benefits

were noted by NOSC: (1) the computer operator received timely notice of

important alerts which might otherwise have been delayed or entirely

missed, (2) operator efficiency was increased through timely notification of

system status and translation of cryptic status codes, and (3) less time was

required to train the operator since status codes were already decrypted

(Johnson and Nunn, 1986).

Military organizations of other countries also are interested in voice

input and output systems. European countries in particular are conducting

research and planning to field various systems. Areas of interest include

fighter aircraft cockpits (France, United Kingdom, West Germany, and Italy),

artillery target observation and reporting (United Kingdom), battlefield C3 1

(West Germany), and helicopter operations (United Kingdom) (Partridge,

1989). Fighter aircraft for which voice input and output systems are planned

include the French Rafale, the European Fighter Aircraft (West Germany,

Italy, Spain and the United Kingdom), and the Tornado (United Kingdom).

B. FACTORS AFFECTING SYNTHETIC SPEECH INTELLIGIBILITY

When speech synthesis is used for military systems, it is critical that the

listener understand the messages. It has been proposed that several factors

affect speech intelligibility. These include (1) masking noise, (2) speech rate,

(3) speech "richness", and (4) the type of voice synthesis system used.

12



1. Masking, Speech Rate, and Richness

Simpson and Marchionda-Frost (1984) tested the hypothesis that

masking of the fundamental frequency of synthesized speech by high energy

cockpit noise decreases the comprehensibility of the synthetic voice. They

also evaluated whether response times to synthetic voice messages are

diminished as the speech rate increases until an unknown maximum

cognitive processing rate is reached. Under the experimental conditions

tested, they found no significant differences in intelligibility due to masking

noise at the same frequency as the synthesized speech. They also found no

significant differences in intelligibility as a function of speech rate, within the

range of 156 to 178 words per minute.

Other studies have been conducted on the effects of speech rate on

comprehensibility. Slowiaczek and Nusbaum (1985) found "...significant

decrements in intelligibility with i:zcreased speaking rate". Marics and

Williges (1988) also found decreased intelligibility and increased response

latency with an increase in speech rates.

Possible explanations for the apparent discrepancies in findings

among researchers may be due to the unique experimental procedures

utilized by Simpson and Marchionda-Frost. Subjects in their experiments

were trained until they scored at a 100% recognition level for all vocabulary

words, then were maintained at 100% word recognition status during the

course of the experiment. All messages were structured using the same

general format: threat type/position/status, in that order. The vocabulary

word set and number of different messages were small.
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Synthetic voice devices are generally considered of maximum

usefulness for employment in systems which require a large or even

unlimited vocabulary (Allen, 1981). Under these conditions neither

vocabulary nor sentence structure may be 100% pre-trained. Compared to the

Simpson and Marchionda-Frost study, Slowiaczek and Nusbaum (1985) and

Marics and Williges (1988) utilized larger vocabularies and more varied

structures to test the effects of speech rates on intelligibility. Thus, it is not

surprising that results were different. Tests of the effe.s of masking noise

also might yield different results, with large vocabularies and test subjects that

are not trained to 100% word recognition capability.

A "rich" voice is one that is full and mellow in tone and quality.

Digital Equipment corporation offers the following description of the richness

parameter of its DECtalk system:

The opposite of a soft breathy voice is a rich, brilliant voice. This

voice type carries well in a noisy environment [emphasis added]. It is forceful

and intelligible, although not always the most friendly sounding voice.. .For

example, you might turn up the richness factor when you need a voice that

conveys emergency procedures or warnings.

No known research has been completed to determine the degree to

which increasing voice richness will increase intelligibility. Contact with DEC

did not yield any further information on research related to voice richness

(Telephone Conversation, 1989).

2. Voice Synthesis Systems

There are many different synthetic voice output devices on the

market today. Pratt (1987) compared the performances of eight of these

14



synthetic voice systems: DECtalk (four different voices), Calltext, Infovox,

Prose 2000, TI-Speech, JSRU, Namal Type & Talk, and Computer Concepts.

Pratt tested intelligibility under noisy and clear conditions, using semantic

differential scaling and diagnostic and and modified rhyme tests. Under all

conditions, Perfect Paul, Beautiful Betty, and Frail Frank--three of the four

DECtalk voices tested--rated in the top three. The combined results of all the

tests ranked Perfect Paul overall as the most intelligible voice. In another

study, Greene, Manous, and Pisoni evaluated the DECtalk version 1.8 speech

synthesis system and concluded that "...we have found the synthetic speech to

be substantially better than any of the other test-to-speech systems we have

studied in our laboratory over the last five years" (Indiana University, 1984).

C. STUDY GOAL AND OBJECTIVES

The goal of this study is to provide the U.S. military with a better

understanding of factors that affect comprehensibility of synthetic speech as a

human-computer interface. Emphasis is on the understanding of messages

spoken by several kinds of voices while in a noisy environment. A

laboratory experiment was conducted in order to meet this goal.

The objectives of the experiments are as follows:

1. To determine the effect of speech rate on accuracy and response latency
in the presence of background noise.

2. To determine the effect on accuracy and response latency of synthetic
speech messages presented at lower, the same, and higher frequencies
than the background noise.

3. To determine the effect of increasing the "richness" parameter of a
synthetic voice on accuracy and response latency in noisy
environments.

4. To determine the interactions between voice richness, voice frequency
and speech rate, as these affect accuracy and response latency.

15



D. SCOPE

This study is limited to examining three factors at three levels each which

may affect human perception of the computerized synthetic voice output of

the DECtalk Computer System, Version 1.8, when used in a noisy

environment. The three factors are speech rate, average pitch of the voice as

this relates to the pitch of background noise, and voice richness. The levels

chosen for each factor are: 1) Speech rate--160, 175, and 190 words per minute,

2) Average pitch of the voice--95 Hz, 115 Hz, and 135 Hz, 3) Richness°-10, 50,

and 90 as defined by DEC. The following sections present a detailed

description of the experiment that was conducted, along with results, data

analysis, and conclusions regarding the effects of the three factors on speech

understanding in a noisy environment.
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II. METHODOLOGY

A. EQUIPMENT

Experiments for this study were performed in a Controlled Acoustic

environment chamber developed by Industrial Acoustics Company. The

inside dimensions of the chamber are 78 inches high by 76 inches wide by 72

inches deep. Figure 4 illustrates the experimental equipment configuration.

Maico MA- 24B
Audiometer

-/
ac s

Table Desk Zenith Z-120 in~r~

Mc Ccii-per with
Maim'  Zenith Monitor

TIony
Printe et Keboard sjassette

Figure 4. Experiment Equipment Configuration
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DECtalk version 1.8 voice synthesis computer system, developed by the

Digital Equipment Corporation (DEC), produced the synthetic voice output

used for this study. Ten different voices are provided by DEC which are

customizeable for various parameters. For this study, the Perfect Paul voice

was utilized throughout with modified speech rate, richness, and average

pitch. The designed fundamental frequency of this voice is 120 Hz. The

DECtalk system was driven by a Zenith Z-120 personal computer. This

computer also was used to store and control the verbal sentence material and

variable voice parameters.

Background noise used for masking was an actual shipboard recording of

the USS Kitty Hawk's pump room. A Sony cassette deck model TC-124 played

the tape of the pump room noise for the experiment. A spectrogram of the

sound frequencies of this noise from 95 to 145 Hz, as obtained using the

cassette deck and an HP 3562A signal analyzer system, is provided in Figure 5.

As may be observed, the spectrogram shows a series of spikes with the

maximum at 115 ± 4 Hz, at a root-mean-square (RMS) sound power level of

between -18 dB and -26dB. A spectrogram of the sound frequencies produced

by the signal analyzer/cassette system electronics (Figure 6) shows an energy

spike at 120 Hz, but at a sound power level well below the level of the pump

room noise recording. The pump room noise, as played on the Sony cassette

deck, was considered adequate to provide masking for the Perfect Paul

synthetic voice with the fundamental frequencies used for these tests.

Sound from both the DECtalk system and noise cassette tape were fed into

a Maico model MA-24B research and clinical audiometer, consisting of twin

18
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audiometer channels and an accessory control section. The two signals were

intensified by separate left and right calibrated amplifiers and mixed by the

Maico audiometer. That signal was then fed into the Maico test headsets

worn by the subjects. A HP 427A voltmeter was used at the input jacks to the

acoustic chamber to determine the difference in dB levels between the noise

and the synthetic voice as they were delivered to the Maico test headsets. The

noise signal was maintained at a level of 10 dB stronger than the voice signal.

B. STUDY VARIABLES

Three independent variables were tested during this study. First was the

speech rate of the synthetic voice. Three levels were tested: 160, 175, and 190

words per minute. Second, the fundamental frequency of the synthetic voice

was tested. Three levels were selected, to be lower, the same, and higher than

the high energy frequency of the background noise. The levels were 95, 115,

and 145 Hz. The richness of the voice also was tested at three settings: 10, 50

and 90. All other factors, including background noise frequency and volume,

were held constant.

Two measures were taken to serve as dependent variables for this study.

First was the accuracy with which subjects transcribed synthetic voice

messages as they heard them. Second was response latency--elapsed time

from the end of the vocal presentation of each sentence until the subject

typed the first character of his response.

C EXPERIMENTAL DESIGN

A three-way factorial design was used for this study. Each of the three

independent variables was tested at three levels. The resulting 33 data matrix
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is shown in Figure 7. The 27 cells of the data matrix represent the 27 tested

conditions. All subjects were evaluated under all 27 conditions.

190:

Speech Rate
(Words Per 175
Minute) ________

160 5 0050
0 Richness

95 115 145

Voice Fundamental Frequency
(Hz)

Figure 7. Experimental Design Matrix

The design of this experiment is called a mixed model. When all of the

levels of an experiment are chosen by the experimenter then the design rf the

experiment is a fixed model. If all levels are randomly chosen, the design is a

random model. However, if some levels are chosen by the experimenter and

some levels are randomly selected, the design is a mixed model. In this

experiment, the levels of speech rate, fundamental frequency, and richness

were chosen by the experimenter. However, the subjects were chosen

randomly, resulting in a mixed model.
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D. STUDY PARTICIPANTS

A total of 19 Naval Postgraduate School students from various curricula

participated in this study on a voluntary basis. Of these subjects, 18 were male

and one was female. The participants ranged from 26 to 38 years of age, all

were U.S. military officers from various branches of service, and all were

native English speakers. All subjects indicated that they consider themselves

to have normal hearing.

Participants were asked about previous experience with synthetic voice

output. Four male participants indicated that they had some previous

experience. Two indicated that they had experienced synthetic voice output

on a home personal computer, one had experience as a user with a phone

trouble desk, and one had seen a demonstration at a science center. Test

results from these individuals were not analyzed separately.

E. PROCEDURE

Each participant first filled out a questionnaire which asked for the date,

name of the participant, date of birth, sex, whether the subject had normal

hearing, and if the subject had any previous experience with synthetic voice

output and if so where. The participant was then seated in the acoustic booth.

The following set of instructions was then read by the experimenter to the

subject:

These are the instructions for the synthetic voice experiment. If you have

any questions regarding these instructions please ask and I will repeat any

part or all of the instructions. This is an experiment with the DECtalk

computerized synthetic voice output device in a noisy environment. The
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noise you will be exposed to is from the USS Kitty Hawk's pump room.

Different sentences will be spoken by the DECtalk unit. You will respond as

quickly and accurately as possible after the DECtalk has completed the

sentence by entering the words you thought you heard on the key board. The

sentence you type will be seen on the screen in the bottom left corner. There

is no editing capability. If you make a typo you can tell me after you have

completed typing the sentence. If you do not understand all of the words,

enter what you do understand. Make your best effort to enter any and all

words you heard. Spelling nor typing skill is of concern. After you enter your

name begin the experiment by pressing the return key. Soon thereafter,

DECtalk will present a sentence to you. Respond as quickly and accurately as

possible after the completion of the sentence. End the entry of your sentence

with a return. A prompt will then appear on the screen asking if you are

ready for another sentence. When you are ready press the return key again.

This will continue for 27 times and we will do that twice. I will be here

during the experiment if you have any difficulties or questions.

After the instructions were read, the participant placed the Maico headset

on his or her head and adjusted it, then began the experiment when ready.

Stimulus materials consisted of 100 syntactically correct and meaningful

sentences, spoken to the subjects by the synthesized voice. The sentences

were derived from Egan (1948), and are commonly known as the Harvard

sentences. Each contains five content words (main nouns, adjectives, and

verbs), plus articles and pronouns as necessary to make a smooth-flowing

sentence. Examples of the sentences are:

1. A plump hen is well fitted for stew.
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2. The ape grinned and gnashed his yellow teeth.

3. The birch canoe slid on the smooth planks.

For each test run, 27 sentences were randomly chosen from the 100 sentence

file.

A program written in the Pascal programming language by Professor

David Wadsworth was used to control the experiment (Appendix A). The

program randomly presented each of the 27 test conditions in each 27-

sentence test run. The program also timed response latency--the difference in

time between when the DECtalk finished speaking and when the subject first

pushed a key on the keyboard in response. The program then recorded the

sentence that was spoken, the response latency of the subject, and the

sentence typed on the keyboard by the subject.

Participants verbally noted when they had made typographical errors

while typing the sentence that they tiought they heard. The experimenter

noted these errors for reference when scoring the responses. The program

was run twice for each subject, for a total of 54 sentence presentations per

subject.
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III. RESULTS AND DISCUSSION

A. DATA ANALYSIS

1. Measurement of Response Latency

Response latency was measured in milliseconds from the time the

DECtalk synthesized voice finished a sentence until the subject first pushed a

key on the keyboard in response. The overall average value was 2497

milliseconds.

Inspection of the data points led to the conclusion that a total of 25

response latency values should be considered outjiers. Responses of less than

half of a second and of more than 9 seconds were removed. The remaining

values then were averaged for all of the experimental design matrix cells.

The resulting cell average values were used to replace the outliers so that

clearly erroneous values would not unduly influence the analysis and a

complete data matrix would be available for further analysis.

2. Measurement of Accuracy

As noted earlier, each of the 100 Harvard sentences includes five

content words. Accuracy was measured as a percentage of the number of

content words correctly transcribed. For a given test run (using 27 sentences,

each including five content words) 100% accuracy required correct

transcription of a total of 135 words. Only the content words in each sentence

were considered in determining whether a subject transcribed each sentence

correctly.
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If a content word was missing it was graded as incorrect. The

omission or addition of prefixes or suffixes was scored as incorrect.

Substitution of a word with the same sound but different meaning was scored

as correct, e.g., bear substituted for the word bare.

3. Analysis of Variance

An analysis of variance (ANOVA) was used to determine the level of

the effects of speech rate, voice fundamental frequency, and richness on

response latency and accuracy. Results were used to identify statistically

significant differences in the variance of the mean accuracy and response

latency between the three levels of speech rate, three levels of voice

fundamental frequency, and three levels of richness. ANOVA was also used

to test for interactions between the combinations of each of the three factors

and of all three levels. Due to the mixed model experimental design, during

data analysis all the main effects and interactions of fixed factors were tested

by the corresponding interaction of the fixed part and the random one. The

random main effect and the interactions of the random factor by the fixed

parts were tested against the error term.(Anderson and McLean, 1974). That

is, the main effect of speech rate was tested against the interaction of speech

rate with subject, and the interaction of speech rate with fundamental

frequency was tested against the interaction of speech rate with fundamental

frequency with subject, etc.

The ANOVA was used to determine whether there was a significant

difference ir mean performance levels as a function of the three levels tested

for each variable. For each main effect found to be significant at the 0.05 level

or higher, a Newman-Keuls test was conducted to determine which means
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were significantly different than the others. Initially each test was conducted

at the 0.05 level of significance. If the means were significantly different at the

0.05 level then they were tested at the 0.01 level of significance.

The Statistical Analysis System (SAS) software run on an IBM

3033/4381 computer was used to perform the ANOVA. The Newman-Keuls

test was conducted by the experimenter according to the procedure provided

in Hicks (1973).

B. RESULTS

1. Analysis of Response Latency Data

The effects on response latency of speech rate, voice fundamental

frequency, and richness were analyzed first for both runs combined. In

addition, all interactions were analyzed. The results are shown in Table 1.

As may be observed both the speech rate main effect and the four-way

interaction, speech rate by fundamental frequency by richness by data

collection run, show a level of significance at 0.05 or above. This indicates that

the mean response latency values for at least two of the three speech rates are

significantly different from each other, and that only five times out of 100

would these results be expected to occur randomly. The interaction effect

indicates that the combination of the four factors has an effect on the response

latency. The effect of data collection run itself is significant at the 0.1 level.

No other effects or interactions are significant at the 0.1 level or above.

A Newman-Keuls test was performed to determine which of the

three speech rate levels were significantly different from the others. Speech

rates 160 words per minute and 190 words per minute were significantly
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TABLE 1. ANALYSIS OF VARIANCE FOR RESPONSE LATENCY FOR
BOTH DATA COLLECTION RUNS COMBINED

SOURCE DEGREES OF MEAN F
FREEDOOM SQUARE RATIO

Speech Rate (SR) 2 766 4.75+
Fundamental Frequency (FF) 2 324 2.33
SR * FF 4 174.8 1.08
Richness (Ri) 2 123.5 0.51
SR *Ri 4 26.25 0.27
FF * Ri 4 324 1.69
SR * FF * Ri 8 108.6 0.47
Subject (S) 18 2280
SR * S 36 161.2
FF * S 36 139.1
SR * FF * S 72 161.2
Ri *S 36 244.5
SR * Ri * S 72 97.99
FF * Ri *S 72 192.2
SR *FF *Ri *S i44 230.5
Run (R) 1 995 3.52,
SR *R 2 191.5 1.11
FF * R 2 109.5 0.51
SR FF * R 4 243.8 1.56
Ri * R 2 143.5 0.67
SR Ri * R 4 41.5 0.29
FF Ri * R 4 131.5 0.63
SR *FF *Ri *R 8 651.1 4.59 t
S * R 18 283
SR * S *R 36 172.5
FF * S *R 36 214.3
SR * FF * S * R 72 156.1
Ri *S * R 36 213.8

SR *Ri* S * R 72 143.5
FF *Ri* S * R 72 207.8
SR *FF *Ri * S * R 144 141.9

• Indicates interaction between sources + Shows significance at the 0.05 level
* Shows significance at the 0.1 level t Shows significance at the 0.01 level
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different from each other, at the 0.05 level. The difference between mean

response latencies at 175 and at 160 words per minute was not significant, nor

was the difference between 190 and 175 words per minute.

The mean response latency values for run one and run two as a

function of the three levels of speech rate--160, 175, and 190 words per

minute--are displayed in Figure 8. The graph demonstrates a clear trend of

increasing response latency for increasing speech rate, with response latency

consistently lower in run two than in run one.

I Response Latency Run One
3000 [3 Response Latency Run Two

oJ

2800

S2600
0(

0 
2400

)

2200

2000 Z I "-%-- •

160 175 190

Speech Rate
(words per minute)

Figure 8. Comparison of Mean Response Latencies for Speech Rate on Run
One and Two.
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Because of the interaction between speech rate, fundamental

frequency, richness, and run, two more ANOVAs were conducted, one for

each of the two individual data collection runs. The results for the ANOVA

on data collection run one are given in Table 2 and results for the ANOVA

on run two are shown in Table 3.

Table 2 indicates that for run one, the effect of speech rate on response

latency is significant at the 0.01 level. In addition, the three-way interaction of

speech rate with fundamental frequency with richness is significant at the 0.05

level. No other effects or interactions are significant at the 0.05 level or

above. A Newman-Keuls test was performed to determine at which speech

rate levels the response latency values were significantly different from each

other. Speech rates of 160 words per minute and 190 words per minute were

significantly different from each other at the 0.01 level. The difference

between the mean response latencies at 175 and 160 words per minute was

not significant, nor was the difference between 190 and 175 words rer minute.

For run one, the three-way interaction (speech rate by fundamental

frequency by richness), as these factors affect response latency, is displayed as

three graphs in Figure 9. The mean response latency for each of the three

speech rates is depicted for every richness value--10, 50, and 90--and for every

fundamental frequency setting--95, 115, and 135 Hz-- at each of the three

richness values.

As may be observed in Table 2, the ANOVA of response latency for

run two indicates that no effect or interaction is significant at the 0.05 level or

above. However, the three-way interaction speech rate by fundamental

frequency by richness is significant at the 0.1 level. This run two three-way
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interaction is displayed graphically in Figure 10. The mean response latency is

shown as a function of each speech rate, for each richness value and each

fundamental frequency setting.

TABLE 2. ANALYSIS OF VARIANCE FOR RESPONSE LATENCY FOR
DATA COLLECTION RUN ONE

SOURCE DEGREES OF MEAN F
FREEDOOM SQUARE RATIO

Speech Rate (SR) 2 768.5 6.34 t
Fundamental Frequemcy (FF) 2 90.5 0.44
SR * FF 4 340.3 2.18
Richness (Ri) 2 69.0 0.27
SR *Ri 4 11.0 0.09
FF * Ri 4 149.0 0.76
SR * FF * Ri 8 399.6 2.18 +
Subject (S) 18 1100
SR * S 36 121.3
FF * S 36 207.9
SR * FF * S 72 156.3
Ri *S 36 256.6
SR * Ri * S 72 123.0
FF * Ri *S 72 197.1
SR *FF *Ri * S 144 183.0

• Indicates interaction between sources

+ Shows significance at the 0.05 level
t Shows significance at the 0.01 level

2. Analysis of Accuracy Data

Each sentences was scored for the percentage correct of the five

content words; possible values were 0, 0.2, 0.4, 0.6, 0.8 and 1.0. As a result,

variances and means were not independent. To stabilize the variances, the

values were transformed to 2 * arcsin 4x, following the recommendation of

Winer, 1971. For both runs combined, the effects on accuracy of speech rate,
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voice fundamental frequency, and richness were analyzed, along with all

interactions. The results are presented in Table 4.

TABLE 3. ANALYSIS OF VARIANCE FOR RESPONSE LATENCY FOR
DATA COLLECTION RUN TWO

SOURCE DEGREES OF MEAN F
FREEDOOM SQUARE RATIO

Speech Rate (SR) 2 189.0 0.89
Fundamental Frequency (FF) 2 343.0 2.36
SR * FF 4 78.25 0.49
Richness (Ri) 2 198.0 0.98
SR *Ri 4 57.0 0.48
FF * Ri 4 306.5 1.51
SR * FF * Ri 8 360.1 1.90
Subject (S) 18 1464
SR * S 36 212.3
FF * S 36 145.5
SR * FF * S 72 160.9
Ri *S 36 201.7
SR * Ri * S 72 118.5
FF * Ri *S 72 202.8
SR *FF *Ri *S 144 189.4

• Indicates interaction between sources
* Shows significance at the 0.1 level

For the combined results, the ANOVA indicates that speech rate has a

significant effect on accuracy at the 0.01 level. The main affect of the run

number, and two interactions (speech rate by fundamental frequency by run,

and speech rate by fundamental frequency by richness by run) were significant

at the 0.1 level. This indicates that the mean accuracy values for at least two of

the three speech rates are significantly different from each other, and that

only one time out of 100 would these results be expected to occur randomly.

No other effects or interactions were significant at the 0.1 level or above.
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Figure 9. Response Latency Run One Three-Way Interaction of Speech Rate,
Fundamental Frequency, and Richness.

34



Richness 10
3300 Fundanstal Frequency 96 HZ

- Funxkkrw$,%&J Freqency11 I P

3100 --- O--. FundamenJ Frquency 135 z

270

S 2100
S

160 175 190

Speech Rate
(words Per minute)

Richness 50
Funds mortal Frequency 95 HZ

3500 -- FunrsweIu Frequoncy 15 Hz
I - .0 Fundameial Frequency 13 H z

C

I 5 6015 
9

500

C

00
C S 1719

Speech Rate
(words oe ' ninute)

Richness 90
- Fundamena! Frequency 95 HZ3100 .-...---. FundameI requmncy 1 5HZ

o - - .o- - Fjndamentaj Frequency 35 HZ
2900

CC

E '' 2700 .,

>.=

1900

SO 175 190

Speech Rate
(words per minute)

Figure 10. Response Latency Run Two Three-Way Interaction of Speech Rate,
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TABLE 4. ANALYSIS OF VARIANCE FOR ACCURACY FOR BOTH DATA
COLLECTION RUNS COMBINED

SOURCE DEGREES OF MEAN F
FREEDOOM SQUARE RATIO

Speech Rate (SR) 2 6.571 10.64 t
Fundamental Frequency (FF) 2 0.5880 0.89

SR * FF 4 0.6565 0.88
Richness (Ri) 2 1.781 1.86
SR * 4 3 0.5378 0.62
FF *Ri 4 1.062 1.53
SR * FF * Ri 8 0.4938 0.72
Subject (S) 18 3.101
SR *S 36 0.6174
FF *S 36 0.6628
SR *FF * S 72 0.7496

Ri S 36 0.9597
SR *Ri * S 72 0.8610
FF* Ri *S 72 0.6948
SR *FF *Ri *S 144 0.6902
Run (R) 1 3.429 4.09 *
SR *R 2 0.9985 1.53
FF * R 2 1.067 1.64
SR *FF * R 4 1.501 2.27 9
Ri *R 2 0.4220 0.67
SR *Ri * R 4 0.6613 0.77
FF * Ri * R 4 0.0130 0.02
SR * FF * Ri * R 8 1.036 1.83.
S * R 18 0.8394
SR *S * R 36 0.6512
FF *S *R 36 0.6498
SR * FF * S *R 72 0.6620
Ri* S *R 36 0.6258
SR * Ri *S * R 72 0.8566
FF *Ri* S *R 72 0.7752
SR * FF *S * R 144 0.5667

• Indicates interaction between sources

* Shows significance at the 0.1 level
t- Shows significance at the 0.01 level
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A Newman-Keuls test was performed to determine which of the

speech rate levels were significantly different from one another. Accuracy

values for speech rates of 160 words per minute and 190 words per minute

were significantly different from each other at the 0.01 level of significance.

The difference between mean accuracy values for speech rates of 190 and 175

words per minute was significant at the 0.05 level, as was the difference

between accuracy values for 175 and 160 words per minute.

The mean accuracy values for run one and run two, as a function of

the three levels of speech rate are displayed in Figure 11. Two trends are

evident. First accuracy decreases with increases in speech rate. Second,

accuracy generally is better for the second run than for the first.
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Figure 11. Comparison of Transformed Mean Accuracies for Speech Rate on
Run One and Two.
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Although the effects of run number and the interactions cited above

were significant only at the 0.1 level, (meaning that 10 out of 100 times the

same results could be obtained by chance), additional ANOVA tests were

indicated since two of the three effects were also observed with the other

dependent variable, response latency. Two more ANOVAs were

conducted,one for each individual data collection run. The ANOVA results

for run one are given in Table 5 and the results for run two are shown in

Table 6. As may be observed in the latter, no main effects or interactions were

found to significant at the 0.1 level or above, for run two. Table 5 indicates

that, for the first run, the main effect of speech rate is significant at the 0.01

level. No other effects or interactions were significant at the 0.05 level or

above.

TABLE 5. ANALYSIS OF VARIANCE FOR ACCURACY FOR DATA
COLLECTION RUN ONE

SOURCE DEGREES OF MEAN F
FREEDOOM SQUARE RATIO

Speech Rate (SR) 2 6.31 8.55 t
Fundamental Frequency (FF) 2 0.8535 1.05
SR * FF 4 0.2500 0.31
Richness (Ri) 2 0.2578 0.28
SR * Ri 4 0.4095 0.47
FF * Ri 4 0.5808 0.67
SR * FF * Ri 8 0.5940 0.92
Subject (S) 18 1.989
SR * S 36 0.7383
FF *S 36 0.8136
Sr * FF * S 72 0.8057
Ri *S 36 0.9342
SR * Ri *S 72 0.8631
FF* Ri *S 72 0.8607
SR * EF * Ri * S 144 0.6468

• Indicates interaction between sources

t Shows significance at the 0.01 level
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TABLE 6. ANALYSIS OF VARIANCE FOR ACCURACY FOR DATA
COLLECTION RUN TWO

SOURCE DEGREES OF MEAN F
I FREEDOOM SQUARE RATIO

Speech Rate (SR) 2 1.259 2.37
Fundamental Frequency (FF) 2 0.8015 1.59
SR * FF 4 0.7638 1.26
Richness (Ri) 2 1.945 2.99
SR * Ri 4 0.7895 0.92
FF * Ri 4 0.4940 0.81
SR * FF * Ri 8 0.9356 1.53
Subject (S) 18 1.952
SR * S 36 0.5303
FF S 36 0.5044
SR * FF * S 72 0.6060
Ri *S 36 0.6514
SR * Ri * S 72 0.8546
FF * Ri *S 72 0.6092
SR * FF * Ri * S 144 0.6101

*Indicates interaction between sources

A Newman-Keuls test was performed to determine at which speech

rate levels accuracy values were significantly different from each other. This

test indicated that the mean accuracy values for speech rates of 160 and 190

words per minute were significantly different from each other at the 0.01

level. The mean accuracy values for speech rates of 160 and 175 were

significantly different at the .05 level. The difference between mean accuracy

values for 175 and 190 words per minute was not found to be significantly

different at the 0.05 level or above.

For run one, the interaction of speech rate, fundamental frequency,

richness, and run, as these affect accuracy, are graphically depicted in Figure

12. For ease of comparison, the graphs shown in Figures 9 and 12 are

combined for Figure 13. The similarity of the trends is striking for both of the

dependent variables, as a function of speech rate.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this experiment was to enhance the U.S. military's

understanding of factors which may affect the intelligibility of synthetic

speech. The specific objectives were to gain knowledge about speech rate,

voice fundamental frequency, and richness, particularly in a noisy

environment. Two dependent variables, response latency and accuracy, were

chosen as surrogate measurements for intelligibility.

A. EFFECT OF SPEECH RATE ON RESPONSE LATENCY AND ACCURACY

This study has demonstrated clearly that increasing speech rate leads to an

increase in response latency and a decrease in accuracy, at least for the novice

user in a noisy environment. Analysis of the collected data indicates a 0.01 or

higher level of significance for a difference in the values of response latency

and accuracy means as a function of speech rate. When the first and second

data collection runs are analyzed separately, however, results indicate that

differences among speech rates are significant only for run one. This

indicates that considerable learning is taking place in a relatively short period

of instruction--27 sentences--and that the effect of speech rate on intelligibility

of synthetic speech decreases rapidly with experience.

An important question is what the exact levels of speech rate are that

affect intelligibility. The results from this study are somewhat mixed. For

both response latency and accuracy during run one the differences between

mean values obtained at the upper and lower rates tested, 160 and 190 words
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per minute, are significant at the 0.01 level. Clearly, there is a difference in

intedligibility as speaking speed increases from 160 to 190 words per minute.

The evidence is not so conclusive with respect to the middle rate of

speech intelligibility, at 175 words per minute. When compared with the

intelligibility of speech at 160 or 190 words per minute, response latency

differences for run one are not significant at the 0.05 level. However, for

accuracy measurements, on both runs the effect of speech rate resulted in

significant differences between 160 and 175 words per minute and between

190 and 175 words per minute, at tW- 0.05 level. Considering run one alone,

the difference in mean values for accuracy levels for 160 and 175 words per

minute is significantly different at the 0.05 level, whereas the difference in

means for 175 and 190 words per minute is not significantly different at the

0.05 level.

B. EFFECT OF SYNTHETIC SPEECH MESSAGES PRESENTED AT LOWER,
THE SAME, AND HIGHER FREQUENCIES THAN THE BACKGROUND
NOISE

The results of this study were unambiguous with respect to the effect of

the pitch of the synthetic voice on bcth response latency and accuracy. Under

the conditions of background noise and voice frequency tested, the means of

response latency and accuracy were not significantly different at the 0.05 level

or higher,regardless of whether the voice fundamental frequency was higher,

lower, or approximately the same as the frequency of the background noise.

This was true for both runs combined and for the runs separately. No effect

of voice fundamental frequency on the intelligibility of synthetic speech was

demonstrated.
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C. EFFECT OF RICHNESS ON RESPONSE LATENCY AND ACCURACY

The experiment described here demonstrated no significant differences in

response latency or accuracy at the 0.05 level or higher as a function of the

richness of the synthetic voice. This was the case for data from both runs

combined and from the runs analyzed separately. Under the conditions

tested, richness does not appear to have an effect on the intelligibility of

synthetic speech.

D. INTERACTIONS BETWEEN VOICE RICHNESS, VOICE

FUNDAMENTAL FREQUENCY, AND SPEECH RATE

One significant interaction--speech rate by fundamental frequency by

richness--was discovered during this experiment. In run one, the three-way

interaction was found to be significant for the response latency dependent

variable at the 0.05 level. With respect to accuracy on run one,no b. ch

interaction, was observed. Figure 13 compares the results of the effect of the

three-way interaction on both the response latency and accuracy for run one.

It may be observed that the trends are quite similar for this run, though no

similar effect was found for run two. It would appear that the interaction of

the three factors is significant only for the novice user. Even a minor amount

of training--27 sentences--appears to negate the effects of the interaction.

E. RECOMMENDATIONS

Under the conditions of this study, speech rate has been shown to be a

major factor in determining response latency and accuracy, for the novice

user. However, within the range tested--160 to 190 words per minute--speech

rate was not found to be a factor for the experienced user and experience
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seems to be gained quickly. More research is needed to determine how

quickly ]earring takes -lace. It would also be very useful to determine the

upper limit of speech rate that still results in intelligible speech, for an

experienced user.

The relationship of voice fundamental frequency to the frequency of

background noise does not appear to affect the intelligibility of synthetic

speech directly in either the novice or the more experienced user. Yet, for the

novice user an interaction between speech rate, fundamental frequency, and

richness appears to have a rather large effect on intelligibility. The nature of

this interaction is not readily apparent, partly because richness has not been

defined clearly and the nature of this factor and its various effects are not

known. More research is needed to shed light on the interaction, and on

voice richness in general.
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APPENDIX A
Program DecTalk,

Uses CRT,DOS,
TPTimer,
DecComm;

CONST MaxMsg 100;
MaxParm 3;
ComPort 1;
CornSpeed =9600;

VAR OutF :Text;
Iter,NMsg :Word;
T1,T2,T3,T4 :Longlnt;
PCPC2 ,PC3 ,PI ,P2 ,P3,Msg, Hesp String;
MsgBase :Arrayl..Max~sg] OF -String,-
Parrni,Farm2,Farm3 :Array(1. .MjxParm] OF -String;
FarmUsed: Array(l..MaxParrn~l. .MaxParm,l. .MaxParn) OF Boolean;
firstchar Char;
Closed :Boolean;
exit-save: Pointer;

PROCEDURE Initialize;
VAR i,j,k :Word;

BEGIN
'ter := 0;
Ti : 0;
T2 0;
T3 0;
T4 0;
F1
P2
P3
tlsg
Resp
FOR 1 1 TO Max~sg DO New(MsgBase~i]);
FOR 1 1 TO MaxParm DO

BEG IN
New(Parml(i]);
New(Parm2( i];
New(Parm3( iD;
FOR J := TO MaxParn DO

FOR k := 1 TO MaxParm DO ParmUsedti,j,k] :False;
END;

Comlnit(ComPort,ComSpeed);
Randomize;

END;

PROCEDURE SetData;
CONST msgdb 'SPEECH.DAT*;

parmdb 'PARMS.DAT';

VAR dbfile :Text;
str :String;
i :Word;

BEGIN
Assign(dbfile,msgdb);
Reset(dbfile);
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REPEAT
ReadLn(dbfile,str);
IF' NOT(Eof(dbfile)) THEN MsgBasef il str;
Inoci);

UNTIL (I>Max~sg) OR (EOF(dbfile));
N~sg := Pred(i);
Close(dbfile);
Assign(dbfiie,parndb);
Reset(dbfile);
ReadLzn(dbfile,PCl);
FOR j := 1 TO MaxParm DO ReadLn(dbfile,Parmlti]-);
ReadLn(dbfile,PC2);
FOR j :: 1 TO Max~arm DO ReadLn(dbfile,Parm2[i-);
ReadLn(dbfile,PC3);
FOR i := 1 TO Max~arm DjO ReadLndbfile,Parm3[if)
Close(dbfile);

END;

PROCEDURE Beep;

BEGIN
Sound(1000);
Delay(500);
NoSound;

END;

PROCEDURE GetDataFileName;
VAR str :String;

BEGIN
REPEAT

ClrScr;
Write("Enter subject name: )

ReadLri(str);
str := Copy(str+'
IF (str=' )THEN
BEGIN

Beep;
WriteLn('Please enter a ra:ne')'

END;
UNTIL (strc>'
A3sign(OutF,strt>.EXP')
Re~rite(OutF);

END;

PROCEDURE Select~arms;
VAR i,j,k,il,j2,i3,j,j2,j3,kl,k2,k:3: Word;

BEGIN
REPEAT

j : Succ(Pandom(MaxParn));
j :zSucc(Random(MaxParm));

k :~Succ(Random(MaxParm));

UNTIL (ParmUsed~i,j,k]=False);
P1 : Parm1~l]-;
P2 :~Parm2(Jf-;
P3 ::Parm3[k]-;

ParmUsed~i,j,k) := True;
WriteLn(OutF, Parm. 1: ',Pl, Farm. 2: ',P2, Fa-rm. 3: ,P3);
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END;

PROCEDURE SelectMessage;
VAR i :Word;

BEGIN
REPEAT

i :=Succ(Random(NMsg));
UNTIL (MsgBase~iV-<'*)
Msg :=MsgBasefiI-;
MsgBase(i] -

WriteLn(OutF, Nag: *.Msg);
END;

PROCEDURE AwaitStart;

BEGI N
GoToXY(25, 12);
Write('Press ENTER for )

IF (Iter~l) THEN
Write( 'first')

ELSE IF (Iter=MaxParrn*MaxParm*MaxParm) THEN
Write( 'last')

ELSE
Write(*next');

Write(' message.');
ReadLn;
ClrScr;

END;

FUNCTION AwaitResponse :Char;

BEGIN
AwaitResponse :=ReadKey;

END;

PROCEDURE Get~esponse(fc : Char);
CONST or =03

VAR c :Char;
s ARRAY~l. .80) OF Char;,
st String;
i,len : Word;

BEGIN

st fc;
S2;

Reap : '
GaT.,XY(1 .23);
Write(st);
REPEAT

c := ReadKey;
scil =c
Inc( i)
at := st + c
GoToXY( 1,23);
WriteC at);

UNTIL (c~cr) OR (0'80);
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FOR i =I TO Len DO
BEGIN
CASE s~il OF

18 sfji] 0225;
09 s~i] 0231;

0312B. .0256 : U]: 175;
END;
Resp :zResp + i]

END;
END;

PROCEDURE FlushKeys;
VAR c :C11ar;

BEGIN
WHILE KeyPressed DO c :=ReadKey;

END;

{$F+}
PROCEDURE Exit-Proc;

BEGIN
IF NOT(Closed) THEN Close(OutF);
ExitProc :=exit-save;

END;
{$F-}

Begin
Closed :=True;
exit-save ExitProc;
ExitProc @Exit-Proc;

ClrScr;
Initialize;
SetData;
GetDataFileName;
Iter :=1;
Closed :=False;
REPEAT

WriteLn(OutF,*lter.: ,Iter);
SelectParms;
SelectMessage;
Awa itStart;
TI : ReadTimer;
SendMsg(Msg,PC1,P1,PC2,P2,PC3,P3);
FlushKeys;
T2 :=ReadTimer;
firstchar :=Await~esponse;
T3 :=ReadTimer;
GetResponse( firstchar);-
T4 :=ReadTimer;
WriteLn(OutF,'Resp.. ',resp);
WriteLn(OutF,'T1: ,ElapsedTimeString(T1,T2),' T2: ',ElapsedTimeString

(T2,T3),K T3: ',ElapsedTimeString(T3,T4));
WriteLn(OutF);
Inc( Iter);

UNTIL (Iter>MaxParm*MaxParm*MaxParm);
Close(OtitF);
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Closed True;
End.
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Unit DecComm;

Interface

USES IBMCOtI,TPTimer;

PROCEDURE Comlnit(portspeed :Word);

PROCEDURE Send~sg(msg,PCl,PI,PC2,P2,PC3,P3 String);

Implementation
CONST esc =#7

xon = 019;
xoff =07
dtterm esc+'\*
dt-speak esc+'P0;12;1;z'± dtterm;
dt-photext =esc±'PO;Oz;*;
dtquery-reply = esc + 'P0;21;40z' + dtterm;
dt-reply =esc + 'P;31;40z' + dtterm;

Procedure Comlnit(port,speed :Word);
VAR error :Word;

BEGIN
corn_install(port,error);
IF (error<>D) THEN
BEG IN
WriteLn('Cannot install communications package.');
Halt;

END;
comset-speed(speed);
cor_set-parity(cornnone,l);
comraisedtr;

END;

PROCEDURE Send(s :String);
VAR cr,cs :Char;

i :Word;

BEGIN
comjflushrx;
FOR i := 1 TO Length(s) DO

BEGIN
cs : c l
com-tx(cs);
IF (comrxxoff) THEN

REPEAT
UNTIL (com-rx=xon);

END;
END;

PROCEDURE Wait;
VAR c Char;

s String;
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BEGIN
s
REPEAT

REPEAT
C := com-rx;

UNTIL (c<>0O);
S := S + C;

UNTIL (c='\');
END;

PROCEDURE SendMsg(msg,PC1,PI,PC2,P2,PC3,P3 : String);
VAR s : String;

ts,te : LongInt;

BEGIN
s :2 dtphotext + PC1 + P1 + ':DV '+ PC2 + P2 + PC3 + P3 + dtterm;
s :2 s + msg + dt-query reply + 013;
Send(s);
Wait;

END;

Begin
End.
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UNIT ibmcom;

(Version 3.01

(This unit is the communications port interrupt driver for the IBM-PC.
It handles handles all low-level i/o through the serial port. It is
installed by calling com-install. -It deinstalls itself automatically
when the program exits, or you can deinstall it by calling com-deinstall.,

Donated to the public domain by Wayne E. Conrad, January, 1989.
If you have any problems or suggestions, please contact me at my BBS:

Pascaiaholics Anonymous
(602) 484-9356
2400 bps
The home of WBBS
Lots of source code

INTERFACE

USES
Dos;

TYPE
com-parity = (comnone, comeven, com_odd, comzero, comone);

PROCEDURE ccm-flush-rx;
PROCEDURE com-flush-tx;
FUNCTION com-carrier: Boolean;
FUNCTION comrx: Char;
FUNCTION com-tx-ready: Boolean;
FUNCTION com-tx-empty: Boolean;
FUNCTION comrx-empty: Boolean;
PROCEDURE com-tx (ch: Char);
PROCEDURE comtx-string (st: String);
PROCEDURE com-lowerdtr;
PROCEDURE com-raise-dtr;
PROCEDURE com-setspeed (speed: Word);
PROCEDURE com-set-parity (parity. -nm!arity; stop-bits: Byte);

PROCEDURE com-install

portnum : Word;
VAR error: Word

PROCEDURE comdeinstall;

IMPLEMENTATION

fSummary of IBM-PC Asynchronous Adapter Registers. From:
Compute!'s Mapping the IBM PC and PCjr, by Russ Davis
(Greensboro, North Carolina, 1985: COMPUTE! Publications, Inc.),
pp. 290-292.

Addresses given are for COM1 and COM2, respectively. The names given
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in parentheses are the names u~spd in t.his module.

3F8/2F8 (uart data) Read: transmit buffer. Write: receive buffer, or baud
rate divisor LSB if port 3FB, bit 7 = 1.

3F9/2F9 (uart.ier) Write: Interrupt enable register or baud rate divisor
MSB if port 3FB, bit 7 = 1.
PCjr baud rate divisor is different from other models;
clock input is 1.7895 megahertz rather than 1.8432 megahertz.
Interrupt enable register:

bits 7-4 forced to 0
bit 3 l:enable change-in-modern-status interrupt
bit 2 izenable line-status interrupt
bit '1 1=enable transmit-register-empty interrupt
bit 0 l=data-available interrupt

3FA/2FA (uartiir) Interrupt identification register (prioritized)
bits 7-3 forced to 0
bits 2-1 00:change-in-modem-status (lowest)
bits 2-I 017transmit-register-empty (low)
bits 2-1 lO=data-available (high)
bits 2-1 ll:line status (highest)
bit 0 l=no interrupt pending
bit 0 Ozlnterrupt pending

3FB/2FB (uarticr) Line control register
bit 7 O:normal, l:address baud rate divisor registers
bit 6 O=break disabled, l:enabled
bit 5 O:don't force parity

1:if bit 4-3=01 parity always 1

if bit 4-3:11 parity always 0
if bit 3:0 no parity

bit 4 O:odd parity,l=even
bit 3 O=no parity,l:parity
bit 2 0:1 stop bit

1:1.5 stop bits if 5 bits/character or
2 stop bits if 6-8 bits/character

bits 1-0 00:5 bits/character
01:6 bits/character
10:7 bits/character
11:8 bits/character

bits 5..3: 000 No parity
001 Odd parity
010 No parity
011 Even parity
100 No parity
101 Parity always 1
110 No parity
111 Parity always 0

3FC/2FC (uart-mcr) Modem control register
bits 7-5 forced to zero
'bit 4 O=normal, l=loop back test
bits 3-2 all PCs except PCJr
bit 3 Iinterrupts to system bus, user-designated out.put: OUT2
bit 2 user-designated output, OUTI
bit I 1:activate rts
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bit U lzactivate dtr

3FD/2FD (uart-lsr) Line status register
bit 7 forced to 0
bit 6 l=transmit shift register is empty
bit 5 1=tranismit hold register is empty
bit 4 lzbreak received
bit 3 lzframing error received
bit 2 l=parity error received
bit 1 l=overrun error received
bit 0 l=data received

3FE/2FE (uart-msr) Modem status register
bit 7 lreceive line signal detect
bit 6 l=ring indicator (all PCs except PCjr)
bit 5 l=dsr
bit 4 icts
bit 3 l=receive line signal detect has changed state
bit 2 l=rlng indicator has changed state (all PCs except PCjr)
bit 1 lzdsr has changed state
bit 0 l=cts has changed state

3FF/2FF (uart spr) Scratch pad register.)

{Maximum port number (minimum is 1) }

CONST
maxport = 4;

(Base i/o address for each COM port)

CONST
uart-base: ARRAY [l..max-port] OF Integer ($3F8, $2F8, $3E8, $2E8);

{Interrupt numbers for each COM port)

CONST
intnums: ARRAY [1..'sxport] OF Byte = ($0C, SOB, $0C, SOB);

{i8259 interrupt levels for each portr

CONST
i8259levels: ARRAY [l..max-port] OF Byte = (4, 3, 4, 3);

(This variable is TRUE if the interrupt driver has been installed, or FALSE
if it hasn't. It's used to prevent installing twice or deinstalling when not
installed.)

CONST
cominstalled: Boolean = False;

{UART i/o addresses. Values depend upon which COMM port is selected.)

VAR
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ua-ir tda ta Wo rd: {Data rpgisteFrl
ki -trt. -ir- r W, Wrd; ( In te-r rupt enahlI r-g i .t.e7 r
usrtjiir Wo rd: {Interrupt identification register)
uartl1cr Word; (Line control register)
uatrtmcr Word; fModem control r-gister)
tartlIsr Wo r d: (Line status register)
iartn.3r Word; (Modem status register)
flar t-s pr WoDrd; (Scratch pad register}

M riginal ccntentE: of IER and MCR registers. Use-d to roontore IJANT
to whatevter state j t was in be~fore! this drive-r was loaded.l

VAR
old jepr: Byte;
old-_rcr: Byte;

{u)riginal cont.ents of Interrupt vector. Used to restore the vnctr whe!n
the interrupt driver is doelnstalled.)

VAR
old v,.ector: Pointer;

(Original contents of interrupt controller mask. Used to restore the
bit pertaining to the comm controller we're using.)

VAR
old _i8259 _ma..)!tte

(Bit mask for i8259 interrupt controller)

VAR
i8253.bit: Byte;

(Interrupt vector niumber)

VAR
intnum: Byte:

(Receive queue. Received characters are held here until retrieved by
conmrx. 1

,ON ST
rx-queue-size =128; (Change to suit)

VAR
rx-queue: ARRAY (i. .rx-queue-size] OF Byte;
rx-in :Word; (Index of where to store next characterl
rx-cut :Word; {Index of where to retrieve next character)
rx..chars: Word: fNumber of chars in queue)

(Transmit queue. Characters to be transmitted are held here until the
H1ART is ready to transmit them. )
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t.x 01eu s 1 I C {z hange to suit
VAR
tx_quue ARRAY L. .tx_ queue size I OF Byte;
tx in integer jIndex of whet-re to store next. character}
tx -,it Integer; {index of where to retrieve next chsricter}
tx_chars integer; (Number of chars in ,4ueue}

(This variable is used to save the n.:xt link in the "exit procedure"
chain

V A R
,exit sve: Pointer;

41 ir.s, inc {M,:ros for enabling and dicabi [ng irt.,rrip:s

'nterript driver. The PART is programmed to cause an in,-rript wh,-nover
a ;.ir t' *.r ,h, b ,n receiv-d or whon the hART is r, dy t.) t.r.,i:-m-t .inother
charac ter.

f $R -,S- I
[ U:iE corn .iuterript.driver, NTEFFUPT;

VAR
-h Char;
i i r :Byte,
dummy: Byte;

BEGIN

(While bit 0 of the interrupt Identification register is 0, there is an
interrupt to process}

ti; := Port [uart-iir];

WHILE NOT Odd (iir) DO
BEGIN

CASE iir StR 1 OF

(iHr = lOOb: Received data available. Get the character, and if
the buffer in't full, then save it.. If the buffer is full.
then ignore it.}

2.

BEG I N
ch :7 Char (Port [uart_data] );
IF (rx chars <= rx,-queue-size) THEN

BEGIN
rx _queue [rxin] Ord (ch);
Inc (rxin);
IF rx-in > rx-queue size THEN

rx-in :: I;
rx chars :: Succ (rx-chars);
END;

END;

{iir = 010b: Transmit register empty. If the transmit buffer
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is empty, then disable the transmitter to prevent any more
transmit interrupts. Otherwise, send the character.

The test of the line-status-register is to see if the transmit
holding register is truly empty. Some UARTS seem to cause transmit
;i rrupts when the holding register isn't empty, ausing trarismitt.ed

characters to be lost.}

1:

IF (tx-chars <= o) THEN
Port [uart ier] :; Fort [uartlier] AND NOT 2

ELSE
IF Odd (Port [uart-isr] SHR 5) THEN
BEGIN
Port [uartdata] := tx-qtieue (tx-out];
Inc (tx out);
IF tx out > tx queue_size THEN

tx out := 1;
Dec (txchars);
END;

{iir = O01b: Change in modem status. We don't expect this interrupt,
but if one ever occurs we need to read the line status to reset it
and prevent an endless lonp.}

0:
dummy := Port [uartmsr];

{iir = lll: Change in line status. We don't expect this interrupt,
but if one ever occurs we need to read the line status to reset it
and prevent an endless loop.}

3:
dummy := Port [uart-isr];

END;

iir := Port [uart-iirl;
END;

{Tell the interrupt controller that we're done with this interrupt)

Port [$20] := $20;

END;
{$R+,S+}

{Flush (empty) the receive buffer.}

PROCEDURE comflush-rx;
BEGIN
disable-interrupts;
rx-chars := 0;
rxin : 1;
rx-out : 1;
enable-nterrupts;

END;
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Flush (empty) transmit buffer.1

FROCEDURE comflush-tx;
BEGIN

disable interrupts;
tx _chars 0;
tx in 1;
txout I;
enable-interrupts;

END;

fThis function returns TRUE if a carrier is present.)

FUNCTION com-carrier: Boolean;
BEGIN

cor _carrier cominstalled AND Odd (Port [uart-msr] SHR 7);
END;

(Get a character from the receive buffer. If the buffer is empty, return
a NULl, (40).}

FUINCTICN comrx: Char;
BEGIN

IF NOT cominstalled OR (rx chars = 0) THEN
com rx := 0

ELSE
BEGIN
disableinterrupts;
com-rx := Chr (rxjqueue [rxout );

Inc (rxout);
IF rx-out > rx-queuesize THEN

rx-out := 1;
Dec (rx-chars);
enablejinterrupts;
END;

END;

(This function returns True if com-tx can accept a character.}

FUNCTION com-tx-ready: Boolean;
BEGIN
comtx-ready :m (tx chars < tx-queue-size) OR NOT com installed;

END;

{This function returns True if the transmit buffer is empty.}

FUNCTION comtx-empty: Boolean;
BEGIN

com-tx-empty := (txchars = 0) 11q IMT cominstalled;
END;

{This function returns True if the receive buffer is empty.}

FUNCTION com-rx-empty: Boolean;
BEGIN
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c m rx .ompty -rx - ohar:- U 0) OR NuT corn installed;

Send -icharacter. Waits until the transmi t buffer isa 't full, then Puts
he chairacter into it. Thoe i iterrupt driver will senid the chairacter

once the character is at the hlead of the transniit queue and a tr-insmi t
LI~terr'Pt OC cUrf;S

PPOCEDU)'E com-tx (ch: Char);
BEG IN

IF -nm insitalied THEN

i4FPEAT UNTIL *:(o-m _tx _ready;

Aisalble-nterrupts;
tx queue [tx-in] :7Ord (ch);
IF txjn <txqueue sin(- THEN

Itic (Lx -ill)

tx inl Ir1
ic ( x *:-h'Ar3

Port. [(':irtier] Port [uart ier] OR 2;,
ernabl t_i ite i rupts
END;

END ;

;Send ai who le s tring}

PROCEDURE corn _tx _string (st: String);
VAR

i: Byte;
BEGIN

FOR i := 1 TO Liength (st) DO
corn_ tx (st (Ii])

END;

(Lower (deactivate) the DTR line. Causes most modems to hang up.1

PROCEDURE corn lower-dtr;
BEG I N

IF comjnstall-ed THEN
BEG I N
d i!7abe -in te rrupts;
Port [liartmcrj : Port [uart-mcr) AND NOT 1;
#-nabIe-in terrupt s;
END;

END;

fRaise (activate) the DTR line.}

PROCEDURE com-raise-dtr;
BEGIN

IF com-instalied THEN
f:F', i M
disable-interrupts;
Port [uart-mcr) := Port (uart-mcr] OR 1;
enable-_interrupts;

60



END;

{Set the baud rate. Accepts any speed between 2 and 65535. However,
1 m not sure that extremely high speeds (those above 19200) will
always work, since the baud rate Jivisor will be six or less, where a

'ff-ar,-nce of one can represent a cifterence in baud rate of
3840 bits per second or more.}

PROC7DURE corn set speed (speed: Word);
VAR

divisor: Word;
bEGIN

F sor inztalled THEN
BEGIN

IF speed < 2 THEN speed : 2;
!'isor 1 i15200 DIV speed:

Ii sable interrupts:
Port [uartlcr] :: Port (iwart ]cr] OR $00;
Portw [uart data] :2 divisor;
Port [wart-lcr] :F Port [uart icr] AND NOT $80;
enable interrupts;
END;

END;

jSet the parity and stop bits as follows:

com none 8 data bits, no parity
comeven 7 data bits, even parity
comodd 7 data bits, odd parity
comzero 7 data bits, parity always zero
com one 7 data bits, parity )1.ays one}

PROCEDURE com-set-parity (parity: com parity; stop-bits: Byte);
VAR

icr: Byte;
BEGIN

CASE parity OF
com-none: 1cr :z $00 OR $03;
com-even: lcr :: $18 OR $02;
com-odd : 1cr :: $08 OR $02;
comzero: icr :: $38 OR $02;

comone : icr :2 $28 OR $02;
END;

IF stop-bits = 2 THEN
1cr := 1cr OR $04;

disable-interrupts;
Port [uartIcr] := Port [uart-lcr] AND $40 OR icr;
enable-interrupts;

END;

{Install the communications driver. Portnum should be 1..max-port.
Error codes returned are:

0 - No error
I - Invalid port number
2 - UART for that port is not present
3 - Already installed, new installation ignored}
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po rtnum :Word;
VAR error: Word

ier
BEGIN,1

I F c mins t' aed THEN
o r r -.r : 7 3

(2tj I) R r j rnum m-ix -port; THEN

'. o addresses ind nfher hardware f~fio r p1r. P r t

,t _Ia t a :2art _base [ po r trum]
:oti i art-_Iata + I ;

u.-rt J ir :~uart _data + 2;
:t -I !- r uart-data + 3;
-irt m.cr :z uart-data + 4;

:=rls U art _data + 5;
'iart msr :7 uart _data + 6;
.iart-3pr :2uart-data + 7;

2 n tn..ms r por tniumn
25'-bi t _ 1 , iS259levels [portnum];

(Return error if hardware not installed)

olId-er := Port Cuart-ier];
Po r t [ua r t icr] 0;
1F Port Hart ler] <~> 0 THEN

-rror 22

(Save on i nal interrupt oontrol ler mask, then di sahl-e the
interrupt controller for thiz interrupt. I

d1isable _interrupts;
o)ld- 6259-mask := Port [$21];
Port [$213 := old-_i8259 _mask OR j8259bit;
enable-_interrupts;

(Clear the transmit and receive queues)

corn flush-tx;
cornflush-rx;

{Save current interrupt vector, then set the interrupt vector to
the address of our interrupt driver.)

GetlntVec (intnum, oldvector);
SetlntVec (intnum, @com-interrupt_driver);
com-installed := True;
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(Set parity to none, turn off BREAK signal, and make sure

we're not addressing the baud rate registers.}

Port [uart-lcr] := 3;

:7ave original contents of modem control register, then enable
interrupts to system bus and .activate RTS. Leave DTR the way
i t was. I

disablejinterrupts;
old-mcr :: Port [uartmcr];
Fort (uart-mcr] :z 'BA oR (oldmcr AND 1);
enable-interrupts:

{ThFnable interrupt on data-available. The interrupt f, r
transmit-ready is enabled when a character is put into the
transmit queue, and disabled when the transmit queue is empty.

Fort [uart ier] := 1;

tenable the interrupt controller for this interrupt. .

disable- nterrupts;
Port [$21] : Port [$21] AND NOT i98259bit;
enable interrupts;

END;

END;

(Deinstall the interrupt driver completely. It doesn't change the baud
rate or mess with DTR; it tries to leave the interrupt vectors and
enables and everything else as it was when the driver was installed.

This procedure MUST be called by the exit procedure of this module before
the program exits to DOS, Dr the interrupt driver will still
be attached to its vector -- the next communications interrupt that came
along would jump to the interrupt driver which is no longer protected and
may have been written over.)

PROCEL"URE com-deinstall;
BEGIN

IF .om -installed THEN
BEGIN

com-installed := False;

fRestore Modem-Control-Register and Interrupt-Enable-Register.}

Port [uart-mcr] : old-mcr;
Port [uartier] :: old-ier;

(Restore appropriate bit of interrupt controller's mask)

disable interrupts;
Port ($21] := Port ($21] AND NOT i8259bit OR
old i8259_mask AND i8259bit;

enable-interrupts;'
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(Reset the inte, 7,pt vector}

SetlntVec (intnum, old vector);

END;
END

{This procedure is called when the program exits for any reason. It

dJinstalls the interrupt driver. }

'$F+ PROCEDURE exit-procedure; {$F-}

BEGIN
ccm _dejristall
ExitFroc := exit save;

FND;

iThis installs the exit procedure.}

BEGIN
exitave : ExitProc;
ExitProc @exit-procedure;

END.
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